The cn/cn dwarf mouse. Histomorphometric, ultrastructural, and radiographic study in mutants corresponding to human acromesomelic dysplasia Maroteaux type (AMDM)
نویسندگان
چکیده
BACKGROUND The cn/cn dwarf mouse is caused by a loss-of-function mutation in the natriuretic peptide receptor 2 (NPR-2) gene which helps positively regulate endochondral longitudinal bone growth. The gene mutation corresponds to that in the human skeletal dysplasia Acromesomelic Dysplasia Maroteaux type (AMDM). This study assesses histomorphometric, ultrastructural and radiographic correlates of the growth abnormality. METHODS Ten litters of cn/cn and cn/+littermates at ages ranging from 2.5 to 6.5 weeks were studied by skeletal radiographs, histomorphometry and physeal ultrastructure. Skeletal radiographs were done on 2 cn/cn and 2 cn/+littermates at 5 weeks of age. Humeral, femoral, and tibial lengths were measured from 34 intact bones (17 cn/cn, 17 cn/+) at 2.5 to 6.5 weeks. Growth plate histomorphometry in 50 bones (26 cn/cn and 24 cn/+) determined the hypertrophic zone/entire physeal cartilage ratios in 204 sections (87 cn/+, 117 cn/cn) at 3 time periods (2.5-3, 4-4.5, and 6-6.5 weeks). Electron microscopy assessed 6 cn/cn and 6 cn/+age and site-matched physeal cartilage. RESULTS Cn/cn mice were two thirds the size of the cn/+. Cn/cn bones were normal in shape or only minimally deformed except for the radius with mid-diaphyseal bowing. Length ratios of cn/cn humeri, femurs, and tibias were a mean of 0.65 (± 0.03, n = 34, 17 ratios) compared to cn/+bones. The main physeal abnormality was a markedly shortened hypertrophic zone with the ratio of hypertrophic zone to entire physis 0.17 (± 0.063) in the cn/cn and 0.30 (± 0.052) in the cn/+mice. Ratio assessments were similar comparing humeral, femoral, and tibial growth plates as were ratios from each of the 3 time periods. Ultrastructural assessments from the resting zone to the lower hypertrophic zone-metaphyseal junction showed no specific individual cell abnormalities in cn/cn compared to cn/+physes. CONCLUSIONS The disorder causes a shortened physeal hypertrophic zone but normal ultrastructure of cn/cn chondrocytes points to abnormality primarily affecting the hypertrophic zone rather than a structural cell or matrix synthesis problem.
منابع مشابه
Defective cellular trafficking of missense NPR-B mutants is the major mechanism underlying acromesomelic dysplasia-type Maroteaux.
Natriuretic peptides (NPs) comprise a family of structurally related but genetically distinct hormones that regulate a variety of physiological processes such as cardiac growth, blood pressure, axonal pathfinding and endochondral ossification leading to the formation of vertebrae and long bones. The biological actions of NPs are mediated by natriuretic peptide receptors (NPRs) A, B and C that a...
متن کاملExclusion of chromosome 9 helps to identify mild variants of acromesomelic dysplasia Maroteaux type.
Acromesomelic dysplasia Maroteaux type (AMDM) is an autosomal recessive disorder belonging to the group of acromesomelic dysplasias. AMDM is characterised by severe dwarfism with shortening of the middle and distal segments of the limbs. An AMDM gene has recently been mapped to human chromosome 9p13-q12 by homozygosity mapping in four consanguineous families. Here, we show linkage of the diseas...
متن کاملA novel loss-of-function mutation in Npr2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type.
We discovered a new spontaneous mutant allele of Npr2 named peewee (pwe) that exhibits severe disproportionate dwarfism and female infertility. The pwe phenotype is caused by a four base-pair deletion in exon 3 that generates a premature stop codon at codon 313 (L313X). The Npr2(pwe/pwe) mouse is a model for the human skeletal dysplasia acromesomelic dysplasia, Maroteaux type (AMDM). We conduct...
متن کاملAnomalous magnetic and electric moments of τ and lepton flavor mixing matrix in effective lagrangian approach
In an effective lagrangian approach [1] to new physics, the authors in ref. [2] pushed tau anomalous magnetic and electric dipole moments (AMDM and EDM) down to 10−11 and 10−25 e cm by using a Fritzsch-Xing lepton mass matrix ansatz. In this note, we find that, in this approach, there exists the connection between τ AMDM and EDM and the lepton flavor mixing matrix. By using the current neutrino...
متن کاملHeterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature.
Based on the observation of reduced stature in relatives of patients with acromesomelic dysplasia, Maroteaux type (AMDM), caused by homozygous or compound heterozygous mutations in natriuretic peptide receptor-B gene (NPR2), it has been suggested that heterozygous mutations in this gene could be responsible for the growth impairment observed in some cases of idiopathic short stature (ISS). We e...
متن کامل